southernocean.ai


#Southern Ocean AI | Artificial Intelligence for Southern Ocean


#picknik.ai | Remote Robot Control


#Alan Turing Institute | Developing digital twin of Antarctica | Identified icebergs using AI algoritms on satellite images


#British Antarctic Survey (BAS) AI Lab | Iceberg-detection using AI algoritms on SAR satellite images of polar oceans


#Natural Environment Research Council (NERC) | Investing in environmental science


#SEA.AI | Detecting floating objects early | Using thermal and optical cameras to catch also objects escaping conventional ­systems such as Radar or AIS: Unsignalled crafts or other floating obstacles, e.g., containers, tree trunks, buoys, inflatables, kayaks, persons over board | System computes input from lowlight and thermal cameras, using Machine Vision technology, deep learning capabilities and proprietary database of millions of annotated marine objects | High-resolution lowlight and thermal cameras | Real-time learning of water surface patterns | Searching for anomalies | Distinguishing water from non-water | Comparing anomalies with neural network | Recognize objects by matching combination of filters | Augmented reality video stream combined with map view | Intelligent alarming based on threat level | Detecting persons in water | On-board cameras with integrated image processing | Providing digital understanding of vessel surroundings on water | SEA.AI App on smartphone or tablet


#Australian Securities Exchange (ASX) | Listings | Markets | Technology | Data | Securities


#SubcImaging | Cameras | Lights | Systems | Software | Lasers


#uWare Robotics | Autonomous underwater vehicles (AUVs)


#Sea Machines | Artificial Intelligence Recognition and Identification System | Detects, tracks, classifies and geolocates objects, vessel traffic and other potential obstacles


#Advanced Navigation | AI-based marine navigation systems | AI-Based underwater navigation solutions and robotics technology | Hydrography | Underwater acoustic positioning solutions | Autonomous Underwater Vehicle (AUV) | Inertial navigation systems (INS) | Sidney, Australia


#Ommatidia Lidar | Ocean observation | 3D Light Sensor | In-orbit characterization of large deployable reflectors (LDRs) | Channels: 128 parallel | Imaging vibrometry functionality | Target accuracy: 10µm | Measurement range: 0.5-20 m | Measurement accuracy (MPE): 20 + 6 μ/m | Angular range 30 x 360 | Vibrometry sampling frequenvy: 40 kHz | Vibrometry max in-band velocity: 15.5 mm/s | Power consumption: 45W | Battery operation time: 240 min | Interface: Ethernet | Format: CSV / VKT / STL / PLY / TXT | Dimension: 150x228x382 mm | Weight: 7,5 kg | Pointer: ~633 nm | Temperature range: 0/40 ºC | Environmental protection class: IP54 | Eye safety: Class 1M | Raw point clouds: over 1 million points | Calibration: metrology-grade with compensation of thermal and atmospheric effects | ESA


#Heliogen | Decarbonizing industry with concentrated sunlight